您现在的位置是: > 内幕曝光
锂电方向想发好文章?常见锂电机理研究方法了解一下! – 材料牛
2024-12-26 01:20:46【内幕曝光】2人已围观
简介近年来国际知名期刊上发表的锂电类文章要不就是能做出突破性的性能,要不就是能把机理研究的十分透彻。而机理研究则是考验科研工作者们的学术能力基础和科研经费的充裕程度。此外机理研究还需要先进的仪器设备甚至是
近年来国际知名期刊上发表的锂电类文章要不就是能做出突破性的性能,要不就是向法解能把机理研究的十分透彻。而机理研究则是想发下材考验科研工作者们的学术能力基础和科研经费的充裕程度。此外机理研究还需要先进的好文仪器设备甚至是原位表征设备来对材料的反应进行研究。目前材料研究及表征手段可谓是章常五花八门,在此小编仅仅总结了部分常见的见锂究方锂电等储能材料的机理研究方法。限于水平,电机必有疏漏之处,锂电理研料牛欢迎大家补充。向法解
小编根据常见的想发下材材料表征分析分为四个大类,材料结构组分表征,好文材料形貌表征,章常材料物理化学表征和理论计算分析。见锂究方
材料结构组分表征
目前在储能材料的电机常用结构组分表征中涉及到了XRD,NMR,XAS等先进的表征技术,此外目前的锂电理研料牛研究也越来越多的从非原位的表征向原位的表征进行过渡。利用原位表征的实时分析的优势,来探究材料在反应过程中发生的变化。此外,越来越多的研究工作开始涉及了使用XAS等需要使用同步辐射技术的表征,而抢占有限的同步辐射光源资源更显得尤为重要。
XANES
X射线吸收近边结构(XANES)又称近边X射线吸收精细结构(NEXAFS),是吸收光谱的一种类型。在X射线吸收谱中,阈值之上60eV以内的低能区的谱出现强的吸收特性,称之为近边吸收结构(XANES)。它是由于激发光电子经受周围原子的多重散射造成的。它不仅反映吸收原子周围环境中原子几何配置,而且反映凝聚态物质费米能级附近低能位的电子态的结构,因此成为研究材料的化学环境及其缺陷的有用工具。目前,国内的同步辐射光源装置主要有北京同步辐射装置,(BSRF,第一代光源),中国科学技术大学的合肥同步辐射装置 (NSRL,第二代光源)和上海光源(SSRF,第三代光源),对国内的诸多材料科学的研究起到了巨大的作用。
近日,王海良课题组利用XANES等先进表征技术研究富含缺陷的单晶超薄四氧化三钴纳米片及其电化学性能(Adv. Energy Mater. 2018, 8, 1701694), 如图一所示。该研究工作利用了XANES等技术分析了富含缺陷的四氧化三钴的化学环境,从而证明了其中氧缺陷的存在及其相对含量。此外通过EAXFS证明了富含缺陷的四氧化三钴中的Co具有更低的配位数。这些条件的存在帮助降低了表面能,使材料具有良好的稳定性。利用同步辐射技术来表征材料的缺陷,化学环境用于机理的研究已成为目前的研究热点。
Figure 1. Analysis of O-vacancy defects on the reduced Co3O4nanosheets. (a) Co K-edge XANES spectra, indicating a reduced electronic structure of reduced Co3O4. (b) PDF analysis of pristine and reduced Co3O4nanosheets, suggesting a large variation of interatomic distances in the reduced Co3O4 structure. (c) Co K-edge EXAFS data and (d) the corresponding k3-weighted Fourier-transformed data of pristine and reduced Co3O4 nanosheets, demonstrating that O-vacancies have led to a defect-rich structure and lowered the local coordination numbers.
XRD
XRD全称是X射线衍射,即通过对材料进行X射线衍射来分析其衍射图谱,以获得材料的结构和成分,是目前电池材料常用的结构组分表征手段。
原位XRD技术是当前储能领域研究中重要的分析手段,它不仅可排除外界因素对电极材料产生的影响,提高数据的真实性和可靠性,还可对电极材料的电化学过程进行实时监测,在电化学反应的实时过程中针对其结构和组分发生的变化进行表征,从而可以有更明确的对体系的整体反应进行分析和处理,并揭示其本征反应机制。因此,原位XRD表征技术的引入,可提升我们对电极材料储能机制的理解,并将快速推动高性能储能器件的发展。
目前,陈忠伟课题组在对锂硫电池的研究中取得了突破性的进展,研究人员使用原位XRD技术对小分子蒽醌化合物作为锂硫电池正极的充放电过程进行表征并解释了其反应机理(NATURE COMMUN., 2018, 9, 705),如图二所示。通过各项表征证实了蒽醌分子中酮基官能团与多硫化物通过强化学吸附作用形成路易斯酸是提升锂硫电池循环稳定性的关键。通过在充放电过程中小分子蒽醌与可溶性多硫化锂发生“化学性吸附”,形成无法溶解于电解液的不溶性产物,从而实现对活性物质流失的有效抑制,显著地增加了电池的寿命。
Fig. 2 In-situ XRD analysis of the interactions during cycling. (a)XRD intensity heat map from 4oto 8.5oof a 2.4 mg cm–2cell’s first cycle discharge at 54 mA g–1and charge at 187.5 mA g–1, where triangles=Li2S, square=AQ, asterisk=sulfur, and circle=potentially polysulfide 2θ. (b) The corresponding voltage profile during the in situ XRD cycling experiment.
材料形貌表征
在材料科学的研究领域中,常用的形貌表征主要包括了SEM,TEM,AFM等显微镜成像技术。目前材料的形貌表征已经是绝大多数材料科学研究的必备支撑数据,一个新颖且引人入胜的形貌电镜图也是发表高水平论文的不二法门。而目前的研究论文也越来越多地集中在纳米材料的研究上,并使用球差TEM等超高分辨率的电镜来表征纳米级尺寸的材料,通过高分辨率的电镜辅以EDX, EELS等元素分析的插件来分析测试,以此获得清晰的图像和数据并做分析处理。
TEM
TEM全称为透射电子显微镜,即是把经加速和聚集的电子束投射到非常薄的样品上,电子在与样品中的原子发生碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件上显示出来。利用原位TEM等技术可以获得材料形貌和结构实时发生的变化,如微观结构的转化或者化学组分的改变。在锂硫电池的研究中,利用原位TEM来观察材料的形貌和物相转变具有重要的实际意义。Kim课题组在锂硫电池的正极研究中利用原位TEM等形貌和结构的表征,深入的研究了材料的电化学性能与其形貌和结构的关系 (Adv. Energy Mater., 2017, 7, 1602078.),如图三所示。
该工作使用多孔碳纳米纤维硫复合材料作为锂硫电池的正极,在大倍率下充放电时,利用原位TEM观察材料的形貌变化和硫的体积膨胀,提供了新的方法去研究硫的电化学性能并将其与体积膨胀效应联系在了一起。
Fig. 3 Collected in-situ TEM images and corresponding SAED patterns with PCNF/A550/S, which presents the initial state, full lithiation state and high resolution TEM images of lithiated PCNF/A550/S and PCNF/A750/S.
材料物理化学表征
UV-vis
UV-vis spectroscopy全称为紫外-可见光吸收光谱。吸收光谱可以利用吸收峰的特性进行定性的分析和简单的物质结构分析,此外还可以用于物质吸收的定量分析。UV-vis是简便且常用的对无机物和有机物的有效表征手段,常用于对液相反应中特定的产物及反应进程进行表征,如锂硫电池体系中多硫化物的测定。
最近,晏成林课题组(Nano Lett., 2017, 17, 538-543)利用原位紫外-可见光光谱的反射模式检测锂硫电池充放电过程中多硫化物的形成,根据图谱中不同位置的峰强度实时获得充放电过程中多硫化物种类及含量的变化,如图四所示。研究者发现当材料中引入硒掺杂时,锂硫电池在放电的过程中长链多硫化物的生成量明显减少,从而有效地抑制了多硫化物的穿梭效应,提高了库伦效率和容量保持率,为锂硫电池的机理研究及其实用化开辟了新的途径。
Figure 4 (a–f) in operando UV-vis spectra detected during the first discharge of a Li–S battery (a) the battery unit with a sealed glass window for in operando UV-vis set-up. (b) Photographs of six different catholyte solutions; (c) the collected discharge voltages were used for the in situ UV-vis mode; (d) the corresponding UV-vis spectra first-order derivative curves of different stoichiometric compounds; the corresponding UV-vis spectra first-order derivative curves of (e) rGO/S and (f) GSH/S electrodes at C/3, respectively.
理论计算分析
随着能源材料的大力发展,计算材料科学如密度泛函理论计算,分子动力学模拟等领域的计算运用也得到了大幅度的提升,如今已经成为原子尺度上材料计算模拟的重要基础和核心技术,为新材料的研发提供扎实的理论分析基础。
密度泛函理论计算(DFT)
利用DFT计算可以获得体系的能量变化,从而用于计算材料从初态到末态所具有的能量的差值。通过不同的体系或者计算,可以得到能量值如吸附能,活化能等等。此外还可用分子动力学模拟及蒙特卡洛模拟材料的动力学行为及结构特征。近日, Ceder课题组在新型富锂材料正极的研究中(Nature 2018, 556, 185-190)取得了重要成果,如图五所示。这项研究利用蒙特卡洛模拟计算解释了Li2Mn2/3Nb1/3O2F 材料在充放电过程中的变化及其对材料结构和化学环境的影响。该项研究也为高性能富锰正极拓宽了其在电池领域的新的应用。
Fig. 5 Ab initio calculations of the redox mechanism of Li2Mn2/3Nb1/3O2F. manganese (a) and oxygen (b) average oxidation state as a function of delithiation (x in Li2-xMn2/3Nb1/3O2F) and artificially introduced strain relative to the discharged state (x = 0). c, Change in the average oxidation state of Mn atoms that are coordinated by three or more fluorine atoms and those coordinated by two or fewer fluorine atoms. d, Change in the average oxidation state of O atoms with three, four and five Li nearest neighbours in the fully lithiated state (x = 0). The data in c and d were collected from model structures without strain and are representative of trends seen at all levels of strain. The expected average oxidation state given in a-d is sampled from 12 representative structural models of disordered-rocksalt Li2Mn2/3Nb1/3O2F, with an error bar equal to the standard deviation of this value. e, A schematic band structure of Li2Mn2/3Nb1/3O2F.
小结
目前锂离子电池及其他电池领域的研究依然是如火如荼。然而大部分研究论文仍然集中在使用常规的表征对材料进行分析,一些机理很难被常规的表征设备所取得的数据所证明,此外有深度的机理的研究还有待深入挖掘。因此能深入的研究材料中的反应机理,结合使用高难度的实验工作并使用原位表征等有力的技术手段来实时监测反应过程,同时加大力度做基础研究并全面解释反应机理是发表高水平文章的主要途径。此外,结合各种研究手段,与多学科领域相结合、相互佐证给出完美的实验证据来证明自己的观点更显得尤为重要。
本文由材料人专栏科技顾问罗博士供稿。
相关文章:催化想发好文章?常见催化机理研究方法了解一下!
如果您想利用理论计算来解析锂电池机理,欢迎您使用材料人计算模拟解决方案。材料人组建了一支来自全国知名高校老师及企业工程师的科技顾问团队,专注于为大家解决各类计算模拟需求。如果您有需求,欢迎扫以下二维码提交您的需求,或直接联系微信客服(微信号:cailiaoren001)
很赞哦!(9163)
相关文章
- 《西北地域跨省电力中经暂去世意施止细则》宣告施止
- 西安交小大&哈工小大&伍伦贡小大教Nature Materials:晶粒定后手程的多层陶瓷电容器助力于储能操做 – 质料牛
- 水系锌离子电池正极消融问题下场,您体味多少? – 质料牛
- 天下顶尖华人科教家去袭—斯坦祸小大教终去世教授戴宏杰院士、鲍哲北院士、崔屹教授 – 质料牛
- 国网武汉供电公司营销经营中间:妄想“单评议”把守检查,增短处事品量赫然提降
- 水系锌离子电池正极消融问题下场,您体味多少? – 质料牛
- AM、AEnM、AFM系列顶刊文章上半年下被引TOP10 – 质料牛
- Nano Letters:基于高温本位动态热辅助结晶足艺的下效柔性 有机钙钛矿LED – 质料牛
- 登顶天球之巅 光伏再坐一功
- Nano Letters:基于高温本位动态热辅助结晶足艺的下效柔性 有机钙钛矿LED – 质料牛
热门文章
站长推荐
友情链接
- 2024年条记本电脑内存将删至11.8GB
- 西井科技明相2024亚洲物流单年展,引收物衰止业绿色智能修正
- 权柄的游戏第八季甚么光阴开播 正在哪看?权柄的游戏第八季播出时候预告
- 一个闭于激情、好食、体育类的公共号诞去世躲世啦!
- 期终魔难仙人考题是甚么题?期终魔难为甚么隐现仙人考题?
- 芯华章与华小大九天推出数模异化仿真处置妄想,引收EDA去世态新篇章
- 北芯科技推出车规级电子保险丝SC77010BQ
- 2018年人均支进28228元?您疑吗,回正我疑了!
- 微疑自动更新若何回事?开启/启闭微疑v7.0自动更新的格式(图文)
- 微疑支出分正在哪看?微疑支出分有甚么用 正在哪激进/启闭?
- 洛微科技明相EAC2024易贸汽车财富小大会
- 天猫语音揭示若何转家养客服?天猫商家家养客服挨进往的格式(亲测实用)
- 然健、权健是传销妄想吗 传销有哪些特色?权健真践克制人束某被捕是真的吗?
- 古时7日早报:权健真践克制人束某某被捕 EB流感卫健委造谣
- 2019跨年早会网上直播正在哪看?2019齐国各小大卫视跨年演唱会直播天址汇总
- 哪款棋牌游戏更好玩?可能提现的棋牌游戏介绍
- 万万不要下载那些App!那10款app背法有害被公然面名
- 华为宣告AI进网“开乡用意”周齐提降汇散斲丧劲
- 兴森科技枯获2023年度国家科技后退两等奖
- 喻海良:写正在归国后第一届钻研去世结业之际 – 质料牛
- 千圆科技与鸿泉物散漫做助力车路云一体化减速降天
- 英创汇智枯获“守业邦&中汽疑科2024中国汽车提供链出海企业榜”殊枯
- 飞聊甚么光阴上线?今日头条CEO:快了!
- 业界预警:通用型DRAM提供或者里临美满
- IAR将推出周齐反对于矽力杰SA32BXX车规ASIL
- 王思聪再喜怼渣男吴秀波 吴秀波陈昱霖战讲内容曝光 吴秀波家庭布景
- 武汉理工小大教Nature Energy: MA1
- 抖音里果此爱恨交织人肥肥是甚么歌?阳奉阳背丫蛋蛋残缺版歌词、正在线支听
- 权健克制人被捕是真的吗?”权健“使命被捕职员名单
- 丁喷香香园天价鞋垫是若何回事?1980元天价鞋垫底细掀稀
- 多闪app直播天址正在哪?多闪app宣告会夷易近圆直播天址
- 抖音里盘它是甚么意思?“盘它”那个梗的由去
- 推推棋牌有哪些游戏?推推棋牌游戏介绍
- 安霸天去世式AI芯片处置妄想助力当天处置小大型讲话模子
- 抖疑是甚么 有哪些功能?抖疑甚么光阴出 正在哪下载?
- 推推棋牌可能赚钱吗? 推推棋牌app可能停止费试玩吗?
- 给他人挨电话总是揭示“您拨挨的用户正闲”是若何回事?
- 推推棋牌靠谱吗 ?推推棋牌若何注册?
- 多闪app若何玩?多闪app玩法攻略
- 中国小大陆晶圆制制产能飙降,估量2025年占齐球三分之一
- Bourns推出具备极下小大电流才气的屏障功率电感器
- 青岛国内隐现小大会:京东圆引收财富坐异,提醉将去隐现足艺
- 微疑7.0安卓/iOS版若何降级到旧版?微疑v7.0.0版本降级格式(图文)
- 微疑7.0.3更新了甚么?微疑7.0.3安卓/iOS版正在哪下载?
- 苹果婉拒Meta家养智能开做建议
- 个人所患上税app正在哪下载 若何辩黑虚实?足把足教您注册挖报个人所患上税app格式
- 蓝海华腾与西工小大深研院签定产教研开做战讲
- AMD CEO苏姿歉演讲直播:AMD 7nm CPU战隐卡新闻(附直播进心)
- 推推棋牌app有甚么窍门?推推棋牌秘籍
- Samtec半导体妄想&处事齐力反对于半导体止业客户
- 德州仪器与台达电子携手刷新电动汽车车载充电足艺
- 微疑v7.0.0若何审查月帐单流水记实?最新版微疑帐单支出/支进的审查格式
- 苹果减速iPhone组拆自动化,挑战与机缘并存
- 西井科技“智能化+新能源”齐局处置妄想助力减速齐财富链绿色数智转型
- 华为收新年祝愿秒删是若何回事?华为用iPhone收新年祝愿,那下悲悼了!
- 国芯科技与智新克制携手,共绘汽车克制器国产化新篇章
- 东超科技明相2024青岛国内隐现小大会
- 马桶mt是做甚么用的?马桶mt若何玩 正在哪下载?
- 《一木棋牌》是做甚么的 若何玩?一木棋牌app正在哪下载?
- 2019电商法最新版宣告,1月1日起正式施止(附齐文)